
Project Report

Institute of Technology, Carlow

B.Sc.(Honours) in Software Development

CW238

Project Title

Musical Tablature Editor

Document Date

17/04/13

Student Name and ID

Robert Connolly C00123951

Supervisor

Paul Barry

2

Table of Contents
Introduction ... 3

Description of Submitted Project ... 4

1. Electric/Acoustic Guitar Tablature ... 5

2. Note Effects and Durations ... 8

3. MIDI Playback .. 8

4. Extra Features ... 9

Conformance to Specification and Design .. 13

1. Electric/Acoustic Guitar Tablature ... 13

2. Note Effects and Durations ... 14

3. MIDI Playback .. 15

4. Classes and Data Structures ... 15

Description of Learning ... 16

1. Technical .. 16

2. Personal ... 17

Review of Project ... 20

1. What went right? .. 20

2. What went wrong? ... 21

3. What’s still left to do ... 22

4. If starting again, how would I approach it differently? ... 23

5. Advice to others attempting a similar project .. 23

6. Outcome of Technology choices ... 24

Acknowledgements ... 25

3

Introduction
This document reviews and concludes the activities on my finished project. It will
describe:

 What the finished product is.
 How the finished product compares to the specification and original design.
 What did I technically and personally learn and achieve.
 Finally, give a complete review of my project in terms of what experience I had

with it and what advice I have to give to anyone else attempting a similar project.

The aim of this project was to develop an application that allows users to write down or

create their music on the electric, acoustic and bass guitar and drums in a very simple

way. That way is tablature. It was aimed at non musicians and musicians who don’t

know musical notation. This would be aided with the ability to hear what their music

sounds like, by being able to play back what they’ve written. This allows users to hear if

they have written down their music accurately, but also help them create music by

being able to hear what they’ve written sounds like. The project was also to aid others

in learning another person’s music, by being able to read it in the application and play

back the music to hear what it sounds like.

4

Description of Submitted Project

Fig 1: Screenshot of the finished product.

The finished product allows users to write down their music for a six string electric or

acoustic guitar in tablature form and play it back. I will describe it and what I’ve

achieved in terms of the core features of my project and extra functionalities, which are:

1. Electric/Acoustic Guitar Tablature

2. Note Effects and Durations

3. MIDI Playback

4. Extra Features

5

1. Electric/Acoustic Guitar Tablature

Fig 2: Music written in tablature in the finished product.

The user can write all the tablature they need for their music. Fig 2 shows how it is

represented in the application. It is an exact replication of how tablature is written.

When the tablature gets too big for the window as the user writes, scrollbars appear to

allow the user to move with ease through their tablature, see Fig 2.

Fig 3: Using the fretboard at the bottom of the screen to write tablature.

The tablature in Fig 2 is written using the fretboard in Fig 3. It is an exact replication of

how a fretboard looks on a guitar. It resizes to fit the window to whatever size is

comfortable for the user.

To write on to the tablature, the user selects notes with the mouse on the fretboard and

then can add them to the tablature. The blue dots in Fig 3 show what notes the user has

selected at this point in time. The users selection is achieved by invisible buttons placed

on top of the drawn fretboard. They line up exactly with the drawn frets that can be

seen on the fretboard, and resize exactly when the user changes the size of the window.

6

Fig 4: Selecting notes on the tablature to update.

Fig 5: Notes updated on the tablature.

The user can update any notes in the tablature by simply selecting a note on the

tablature. The note and any notes played with it appear on the fretboard, and they can

be edited as the user wishes, see Fig 4. When they add the notes back to the tablature,

they replace exactly what they selected on the fretboard, see Fig 5.

They can delete individual notes on the fretboard, or clear the whole fretboard and start

again.

Other features of the fretboard are that they can hear what the notes sound like

together as they add and delete them from the fretboard. This feature can be turned off.

They can also hear what they’ve added to the fretboard at any time by pressing a button.

All this allows the user to hear what they’re adding to the tablature before they add. It

helps to make sure what they are adding is accurate. Also, they can create interesting

chords this way by being able to experiment and hear what they are like.

Fig 6: Default look of toolbar for manipulating bars in the music.

The components shown in Fig 6, allow the user to copy, remove and clear bars of music

written in the tablature. These operations apply to one bar at a time.

7

Copying bars allows the user to insert bars quickly into the tablature that repeat in the

music. This happens quite often in music, so it would be very tedious if the user had to

rewrite identical bars in the music all of the time.

If the user is unhappy with a bar in the music, they can simply remove it from the

tablature. This is crucial removing misplaced bars and to update rewritten music.

The user can also clear any bar. This leaves the bar in the tablature but clears all the

notes in it. This allows them to rewrite a bar very quickly if they made a mess of it.

Fig 7: What Fig 6 looks like when the user copies a bar in the tablature.

Fig 7 is what Fig 6 looks like when the user copies a bar. It allows them to insert a

copied bar as many times as they like in the music simply by pressing the ‘Insert’ button

repeatedly. It aids greatly in enhancing the experience of writing their tablature if they

can add in repeated bars very quickly. It removes the tedium of writing repeated music.

Fig 8: This sets the time signature of a particular bar.

Time signatures, see Fig 8, are a very important component in writing bars. They allow

you to set how many beats are in a bar, and what’s the duration of those beats.

The top value in the time signature is how many beats are in the bar. The bottom value

represents the time duration or value of each of the beats. This is not to say all the notes

in the bar will have the time duration designated by the time signature. It is more about

defining how long overall the bar is in duration. Therefore, this allows the user to define

exactly how long the bar is in duration. As a result, they can set the bar to perfectly fit

the exact amount notes of whatever note durations they need.

The need for this is because it is crucial in writing the music accurately. The bars will

only be as long as they should exactly be, and with only the notes that should be in them.

This means the music is in perfect sync rhythmitically. Music is all about timing, so this

feature is crucial.

8

2. Note Effects and Durations
The note effects were not implemented in the finished product, so I will not describe them

in this document.

Fig 9: Toolbar to change note durations.

Fig 9 shows the toolbar for changing a note’s duration. Notes in music always have

different durations at some point within the music. This toolbar allows the user to

change the duration of any note. This is another crucial feature of the finished product,

as the user can write how long each note is to be played for. This also allows the MIDI to

playback the user’s tablature accurately with the notes playing for the correct duration.

Overall, being able to change the note durations is crucial in writing music to tablature

and learning the music accurately.

3. MIDI Playback

Fig 10: Playing back the tablature in the finished product.

This toolbar is a core feature allows the user to play back what tablature they have

written, using MIDI. See Fig 10 for the playback toolbar. MIDI tells the sound device the

instructions of how to play the music, such as when to play notes and for how long.

Using the note durations the user has applied to their notes, the MIDI will play back the

users tablature exactly as written.

This feature is so important in allowing the user to know exactly how the music sounds.

Therefore, it’s crucial for writing their existing music accurately in the tablature and for

others to be able to learn the music accurately, as they can hear exactly how it should be

played.

Also when the user wants to create new music, they can hear exactly what it sounds like.

This is a pivotal aid in creating music.

The user can play the tablature from start to finish, or from any point in the tablature to

the finish. They can also stop playback at any time.

During playback, the tablature is highlighted in green, see Fig 10, to show the user

where they are in the song and what’s being exactly played at that point in time.

9

In Fig 10, a tempo tool can be seen. This sets the speed at which the music is played back

at. When writing existing music to tablature or creating new music, this allows the user

to tell if the music is being played back at the right tempo and change it if not. It also

allows anyone learning another’s music, at what tempo to play it at.

4. Extra Features
a. New/Open/Save tablature.

b. Choosing an Instrument.

c. Choosing a Key.

d. Tooltips

a. New/Open/Save tablature

Fig 11: The file menu in the finished product.

Fig 12: Opening an existing tablature.

Fig 13: Saving the currently written tablature.

10

The user can create a new tablature to write at any time(Fig 11), open a previously

saved tablature(Fig 12), or save one they are working on(Fig 13).

The user needs to be able to save the tablature they are writing, otherwise the product

lacks any longevity. They would not be able to document their music, or be able to

return to it if they didn’t have enough time to write it first time around. Other users

would have no access to learning other user’s music either. So, while it’s a small feature,

it is a very important and powerful one.

Also, the product reads what the user’s home directory is and automatically creates a

folder, called “MTE Tablature”, especially for them to save their work, see Fig 12 and 13.

They can, however, save tablature in any folder they wish.

b. Choosing an Instrument

Fig 14: Choosing an instrument in the finished product.

The user can choose whatever instrument they like from the list in Fig 14. This is for use

in the MIDI play back of their tablature. When playing back the tablature, it’s of an

enormous aid to be able to hear what the music sounds like when played the target

instrument to play it.

It’s a far more immersive experience. The user can create music better when the

instrument they are using is what they hear when they play back the tablature. They can

write their existing music with more tonal accuracy, and others can learn the music with

more accuracy, because they can hear what way the music sounds with the correct

instrument. It adds depth and a more enjoyable experience to the users.

The instrument in use will be highlighted at all times, so the user knows what they are

using and can change it if they so wish.

11

c. Choosing a Key

Fig 15: Choosing a music key in the finished product.

The user can select whatever music key they want their music to be played in. The MIDI

plays back their music in the exact key chosen.

Music played in different keys can have a profound effect on the quality of the music

overall. What sounds good in one key, may not sound good in another. Different keys

create different feeling and tone. The user can select the exact key they want their music

played back in. It is crucial in accurately portraying the music in exactly how it sounds.

It aids the creative process greatly as they can experiment writing new music in

different keys.

Usually they will know what their key is, so straight away they can select it from the

menu and be ready to go. Users learning the music can hear exactly what the music

sounds like and in what key, so they can get the correct feel for it.

All keys that are generally used in music are available to the user. So, they’ll never have

to worry about their music being portrayed in the wrong key when playing it back.

12

d. ToolTips

Fig 16: Tooltips in the finished product.

The user can learn how to use every feature in the application simply by putting their

mouse cursor over any of them. The user can turn this feature on and off.

13

Conformance to Specification

and Design
Due to time constraints of my honours degree course, the only realistic target was to be

able to implement what were considered my core features. I will discuss conformance

to specification and design in terms of those core features and data structures used:

1. Electric/Acoustic Guitar Tablature

2. Note Effects and Durations

3. MIDI Playback

4. Classes and Data Structures

1. Electric/Acoustic Guitar Tablature
Specification:

This feature conforms exactly to the specification. There is a mention of a design

decision which should not be in the specification. This will be dealt with in the

conformation of the design on page 13*.

Design:

 Add Notes

The design of adding notes to the tablature has changed. The way I had it before was,

that note objects were created as the user adds new notes. The user wouldn’t know if

they could add the notes to the bar or with the duration they needed, because that

would only be checked when they tried to add the notes. Also, the notes could get a

different duration than the user intended, depending on what space was left in the bar.

This most likely would not be the duration the user intended. It would become very

messy. The user would not really know exactly what space was left in the bar to add

notes, and what was going on with any possible note duration changes.

Now, the bar they will be entering notes into, will have already been created. It will be

filled with empty notes objects of a certain duration, depending on the time signature of

the previous bar.

I have done this because it lets the user know the exact size of the bar and what notes

objects are in it, and what durations each notes object has. The user can change the time

signature or any note durations with full confidence of what they are doing. They know

what notes are in the bar at all times, and know what notes they can add or change in a

bar.

14

 Delete Notes

Before, the design was that the user deleted the notes and the notes were removed from

the bar.

What happens now is, the user simply overwrites notes by adding from the fretboard

when it is empty. I’ve done this because it maintains the time signature of the bar. It still

contains all the notes of durations that add up to duration of the whole bar(which is

determined by the signature).

*One difference was for when the user wants to enter the next chord or note to play, the

user presses the right arrow key to move to the next part. What happens instead is,

when the user adds notes to the tablature, the next insertion point for notes on the

tablature is automatically selected for them.

This is because it allows a quicker insertion of notes that are repeated one after another.

All the user has to do is keep pressing the ‘Add’ button on the fretboard, and identical

notes are inserted one after another very quickly. The fretboard maintains what notes

the user initially entered for this to work. It is meant to help writing tablature easier and

quicker.

2. Note Effects and Durations
I did not get to develop and implement the note effects, so I will just concentrate on note

durations here.

Specification:

The note durations conform exactly to the specification.

Design:

The note durations largely conform to the design. The differences are:

 Instead of messaging the user if a note duration change is too large to change it, a

system sound is heard indicating it can’t be done. I have done this because that is

largely consistent with how operations that can’t be done are messaged to the

user on operating systems. For example, trying to access a window that opened

the current window in Windows 7. The sound is familiar to users as a result.

 In the design before, the bar itself was checked for space to see if it could

accommodate the note’s change in duration. Instead, the notes objects in the bar

are now being checked. The duration of the note being changed and the duration

of empty notes objects in the bar after it, are considered space. Not the bar’s

space itself, as previously designed.

If the change is longer than the current duration, the note to be changed and any

empty notes in the bar after it are considered empty space. This is used to

15

calculate if the note’s duration can be changed to longer. Any empty notes objects

allowing for this are removed.

Also, if the note duration change is shorter than the current one, the current

duration of the note is considered as space. As a result, notes objects of the new

duration will be created and inserted in the bar to make up for the old duration.

The reason for this is because the bar has already been created and is filled with

notes objects, and as a result has no space left. The notes objects themselves are

the potential space.

3. MIDI Playback
Specification:

The MIDI playback conforms exactly to the specification.

Design:

The design is identical, except in one regard. The duration of the note to be played is not

calculated into microseconds, as per design. It is calculated in MIDI ticks.

The beat the note stops playing on, is based on its durations in MIDI ticks also. Not the

index in which the note sits in the array list in the bar, as per my design.

The reason for this is because that’s how the Java Sound measures the duration of a note

to be played using MIDI.

4. Classes and Data Structures
The classes and the data structures used conform exactly to my design.

The only differences are the renaming of some attributes to more descriptive names,

and the addition of other attributes as needed.

The data type for tracks in the tablature was changed to an interface called ‘Tracks’.

This is because it was intended to have drum tracks as well as guitar tracks. Both would

have a generic type to implement so they could be stored in the same array.

16

Description of Learning
I will describe this topic, in terms of what I’ve learned, under the headings:

1. Technical

2. Personal

1. Technical
a. Gui’s:

 I’ve learned how to develop GUI’s in java using the Swing and AWT libraries.

 I can use many different components such as buttons, labels, spinners, combo

boxes, menus and scrollbars.

 I can draw graphics on the GUI. For example:

 The fretboard for the guitar.

 I can dynamically redraw GUI’s. For example:

 The user copies and inserts bars into the GUI’s tablature wherever they

chose.

 The user can open up an existing tablature and it is redrawn to the GUI.

 The fretboard is automatically resized exactly to fit the window as the

user resizes the window.

 Bars are redrawn when their size changes due to note duration changes

and changes in the time signature.

 I can use layout managers for the GUI such as Swing’s BorderLayout, BoxLayout,

FlowLayout, and the more complex GridLayout for the invisible buttons used to

read the users note selection on the fretboard.

 I can layer GUI components using JLayeredPane. For example, I have the graphics

of the fretboard on the lowest level and put the invisible buttons for the user’s

note selection layered on top.

b. Write code in Java:

 I had no experience in programming with Java before the project. Now I have a

good grounding in it due to scale of the project, and I’m comfortable with its

syntax.

 I am comfortable at writing classes in Java and have a good understanding of

them. I have twenty classes in the finished product. They all have their own

distinct purpose in what they do.

 I can reference objects correctly. For example, when a user selects a note on the

tablature to change it, I have to know which notes object has been selected in

order to display all the notes in it on the fretboard. If the notes are replaced on

the tablature, I need to know which tablature object on the GUI that needs to be

updated with the new notes.

17

c. MIDI

 I have a good grasp of generating sounds with MIDI in the Java Sound library. My

project can use MIDI to play back any of a user’s tablature with complete

accuracy in terms of the notes used.

 I can calculate the timing of when the MIDI is played with complete accuracy.

This is crucial when playing music, as it’s all about timing.

 I can select the correct instruments the user wants to use from the sound bank,

and play back their tablature with it. So, I can produce what sound I like with the

sound banks and know how to use them.

d. Object Orientated Design

 Working with Java and developing in Eclipse has given me a better grasp on OOD.

Related data are grouped in their own classes, and the methods associated with

them to work on that data. Each class has its own defined role and

responsibilities specific to it.

 As a result, my designs are more simplified and more robust. They are easier to

debug because the classes are responsible for unique data and the unique

methods that act upon them. So, less is likely to go wrong when one class is

controlling the actions upon its data, and it’s easier to trace where the source of a

bug is as a result.

e. Eclipse IDE

 I am comfortable using the Eclipse environment for developing software. I have

also used it for my third year project, computer science and python projects.

f. Serialise Objects

 I can serialise objects for storing data. In this project, this is used for saving a

user’s tablature. Also, I can de-serialise objects and restore the data. In this

project, that means I can open a user’s previously saved tablature by using the

de-serialised objects. A pivotal aspect of software is to be able to save your work

and be able to continue it at another time. I can do that with Java.

2. Personal
1. Time Management

I’m better at being able to schedule my time into the different things I need to do. For

example, my course has a lot of practical work in many different subjects including this

project. In order to fit everything in and be able achieve the best quality of work I can

achieve in all of it, I need to be able to decide for how long do I concentrate on one

subject, when and for how long.

Some sacrifices have to be made along the way, but to achieve an overall high level of

quality in each subject this has to be done. I need to be able to say, “I have given this

18

amount of time to this subject, now I need to move on to the next subject or else it will

suffer in quality.” Even if that means sometimes, the work on the subject your leaving is

not quite at the level of quality you wanted.

When you’re in your final year, especially with high workload, you need to be able to

spread yourself over all the subjects you need to do. You can’t just decide to concentrate

on a few at the expense of others, especially if you want a high grade average at the end

of the year. It’s a balancing act. You need to be able to structure your time to do it all,

and know when to stop working on the subject your on and move to the next.

2. Prioritising

You need to able to way up all of the work you need to do, the time you have to do it,

and be able to prioritise it. In this project, that meant not being able develop the note

effects, even though they were part of my core features. It came down to a choice of

making what I had done better by allowing the user the ability to save and restore their

work, or trying to implement the note effects with the short time I had left. The latter of

which, I may not have had enough time to implement properly, anyway.

While it would have been great to fully complete my core features, which was actually

more important? Run the risk of not being able to implement note effects in the time

left? That meant users can’t save their work, which ruins the longevity of the product.

The note effects may not have been properly done anyway. This would leave me at the

point I was at to begin with, but with the time I had left wasted and nothing to show for

it. Or concentrate on saving and restoring their work? This ensures the longevity of the

use of the product and was almost guaranteed to be implemented, as it was the easier to

implement.

It was more important for the quality of the product that a user could save the tablature

they were working on, and restore it to work on it at later time. Also, that they could

choose the instrument and key they used for playback in a user friendly way. I used

menus for this choice. Saving, restoring data and even using menus was new to me, so

they would themselves take time to code. Also, I had the time to do these things and

they would add a greater depth in the user’s experience than what the product had up

to this point. So, I prioritised those choices.

The choices worked out, and by prioritising I had a far better guarantee of improving

the product, which I did.

3. Breaking up tasks into more manageable tasks

I had never hard-coded a GUI before, and had never used Java. So it was daunting at first

to be able to get the GUI to a point where the user could enter notes on a graphical

fretboard and add them to the tablature. There was a lot to do and to know in order to

be able to do it.

19

You need to break large tasks like this into more manageable, more realistic and

attainable steps. You need to think about the steps that are needed to get to the main

goal. You learn the best way is to treat each of these steps as a goal within itself, rather

than the main goal being the only one. It makes sense, because you have to achieve a lot

of smaller tasks in order achieve the main task as it is a culmination of all the smaller

tasks.

It makes you think in a more structured way of what steps you have to do, to get to your

main goal, and in what order because that is the way you are thinking. This means you

design your main task better. You are more efficient at reaching it with lesser problems.

Psychologically, it’s less stressful and more rewarding. It’s less stressful because you are

only focusing on the next step at hand. You have less to think about, and it is more

manageable cognitively as you are working within your limits of what you can

contemplate at any one point in time. It’s more rewarding because completing each step

towards your main goal, is a goal and a reward in itself.

So, I simply started with being able to layout and put components on the screen using

the layout managers. Then I learned how to be able to draw graphics to the screen, such

as the lines for the strings of the guitar in the tablature. Then, the graphics for the

fretboard, and resizing them when the user changes the window size. After that, I

learned to create the grid of invisible buttons that recognise the notes selection of the

user on the fretboard. I learned how to display that selection and resize the grid of

buttons along with the fretboard. Then, take that selection and translate it into fret

numbers and on what strings. Finally, I learned how to display them on the tablature,

and so on. All these small manageable tasks and goals eventually led to my main goal –

the user being able to add notes to the tablature.

4. Self-Motivation

I’ve learned to be able to motivate myself better. This becomes more important than

ever with the high workload involved in doing the last year of an honours degree. It can

feel quite daunting when looked at in the bigger picture. It’s better to look at it in more

short term tasks and goals.

In the long term you motivate yourself by knowing it will be all worth it in the end, but

that’s not enough. To ensure and maintain a high level of work during the year and

within this project, you set short term goals to achieve that keep you motivated

throughout. As a result, you are rewarding yourself constantly in the short term and

therefore, keeping yourself motivated towards the long term goal.

20

Review of Project

1. What went right?
 The design I had for the underlying classes and data structures worked perfectly.

The classes were Notes, Bars, GuitarTrack and Tablature (renamed

MusicTabEditor). The MusicTabEditor class stores all the tracks of the tablature

in an array. The GuitarTrack class has all the bars in the track contained in it,

stored in an arraylist for Bars objects. Each bar had all the notes in it, contained

in an arraylist for Notes objects. Each Notes object had an array that stored all

the notes played at one time in the music, stored in it.

 So, I could always associate the bars of a track with the correct track, and

the correct notes in a bar with the correct bar. This was crucial in

knowing when the user wanted to change notes in a bar, or delete and

insert bars into a track.

 When it came to serialising the objects for saving the users tablature, all I

had to do was write the GuitarTrack object. This is because it contained all

the bars of the track, and the bars all the notes. I only had to write the

GuitarTrack object. Every other object contained within it is automatically

serialised as a result, if they implement serialisation.

 The finished design for my core features and the GUI work as they are supposed

to.

 The fretboard can read accurately what notes the user selects, even when

the window is resized.

 The user can add notes to the tablature anywhere they want. They can

edit any notes as much as they like. They can copy, delete and insert bars

anywhere on the tablature. The product maintains the correct tablature at

all times for the user.

 The user can decrease the note durations as much as they like. They can

increase the note durations if it is allowed, due to what empty notes are in

the bar that can be used to make up for the increased duration. This is the

correct behaviour. The bars will increase and decrease in size due to these

changes, and it does so correctly.

 The user can set the time signature of any bar if it is allowed. You can’t set

a time signature lower, if there aren’t enough empty notes in the bar that

you can remove to allow for it. This is the correct behaviour.

 The playback of the tablature plays the users tablature exactly as written

by them, and from anywhere in the tablature they want to play it back

from.

21

 The user can set the playback speed of their tablature with any tempo

they choose, up to 320 beats per minute. The exact speed is always

accurate.

 The user can choose any of the available instruments or music keys to

playback their tablature in. What is chosen is played correctly.

 The user can save tablature and open up saved tablature to continue

working on it.

2. What went wrong?
 Getting the GUI to display components properly was a struggle some of the time.

If a components size wasn’t declared outside of the creation of the object itself,

sometimes the object displayed out of place or not at all.

 Trial and error helped me fix this. I’m still not quite sure of the logic of it

because some components display fine when their size is declared in the

creation of the object.

 Getting the tablature to display correct was a problem. When more tablature

objects where added to the GUI, they didn’t eventually disappear out of the

visible window. As a result, the vertical scrollbar wouldn’t appear. Each tablature

object would squash into itself when more was added in order to fit into the

visible window.

 To fix this I had to set each tablature object’s maximum size when I

created them. That size was set to what the preferred size of the tablature

was, which I had to set separately also.

 Trying to keep the correct notes in a bar when the user increased the duration of

a note caused me a lot of problems. I wasn’t able to calculate correctly what

notes should be in the bar afterwards. This is because you have to remove empty

notes after the note being changed in order to make space for the increased

duration. You include the old duration of the note being changed in this

calculation. The duration of the whole bar (determined by the time signature)

has to be equal to what it what it was before the change.

The empty notes you remove may leave some duration left over in the bar to fill

up, after you get enough to make up for the notes new duration. For example, the

Note’s old duration is 4. I need to change it to 16. The empty notes after it, in

sequence, have durations of 1, 1, 1, 1 and 16. Including the notes old duration

and the empty notes, this adds up to 24 with 8 left over. This is enough, but after

I’ve removed the empty notes what empty notes do I add into the bar to make up

for the leftover duration?

I could just enter in any notes with standard durations that add up to what’s left

over. This would be one note with a duration of 8 in this case. This scenario has a

22

problem. This will potentially add in more or less empty notes, of different

durations, that were not their originally in the bar. In this case, less notes and of

a duration that wasn’t there. It may confuse the user as to why those notes are

there, and remove notes of durations they intended to be there. They may have

to change these new notes which would be tedious, and it would just confuse

them. It’s not consistent with what notes and of what duration were in the bar to

begin with.

 To fix this, it turns out that whatever empty notes you remove, including

the old duration of the changed note, perfectly add up to whatever could

potentially be left over in the duration of the bar. So, the correct empty

notes with the correct durations can be added back in to keep the

consistency of what was in the bar beforehand. In my example, 8 was left

over. So one note with a duration of 4, and four notes of a duration of 1

will be added back in to make up for the leftover duration. These are the

notes that were in the bar beforehand.

 When a user was replacing notes on a particular tablature object, sometimes the

notes would be changed on a different tablature object if there were many on the

GUI. This was because the wrong tablature object was being referenced when

replacing the notes.

 To fix this, I had to give tablature objects each a unique id. Each notes

added to a tablature object would have a reference to its id. So, when I had

to replace the notes, I knew exactly which tablature object they had come

from and could replace them on the exact tablature.

3. What’s still left to do
 Of my core features, I only did not get to develop and implement the note effects,

as it was impossible to gauge beforehand how much work the core features

would entail. As a result, I did not have the time to do the note effects, as the core

features were bigger in scope than could have been anticipated. In order for the

product to be of higher quality, time had to be taken to implement the extra

features mentioned on page 9-11.

 The discretionary and exceptional features of the functional specification I did

not really get to go near. These in hindsight were unrealistic due to the high

workload on the course.

What I did get to do out of the discretionary, was part of the metronome. I can set

the tempo. It is being used for the playback speed of the tablature.

23

4. If starting again, how would I approach it

differently?
I think my design would be better and more refined. I’ve improved greatly in OOD and

I’m far better at it now than when I started, albeit still with a lot of room for

improvement.

Other than that, I think the way I approached it was generally very good. I broke my

core features into smaller tasks. It gave me a more structured approach in arriving at

the main goals of the core features. I managed my time well. I designed and developed

the project in an OO way to the best of my ability, and that design has not caused me any

real problems besides bugs here and there.

5. Advice to others attempting a similar project
 I recommend using the book Head First Java Second Edition.

This book has all the basics of what you need for creating GUI’s, using MIDI and

saving and restoring files which I used for the tablature.

 Oracles online documentation for Java is also excellent.

 Research thoroughly what tablature, time signatures, note duration and

generally how music is written and what components written music is

comprised of.

 Break your tasks into sub tasks. Discover all the steps you need to reach your

main tasks. This also gives you a more structured and certain path towards your

main goals. Your design will be far more efficient to create and maintain.

See each step as a goal to keep you motivated and rewarded. This will keep you

motivated in the long term.

Always keep an eye on your main goal so you know where you’re headed, to

avoid ending up with a product that doesn’t quite match the requirements.

 Only learn what you need to know in relation to your project. Don’t get side

tracked learning things that are not relevant or specific to what you need to

know. It only wastes time.

 Use the internet to supplement any documentation you have about what

technologies you use, or any information you need to know about your projects

subject content. The internet is an invaluable resource, and you may find the

answer you’re looking for far quicker than trying to find it in books.

The information is nearly always there at a click away. Use it.

 Manage your time properly. Try to set realistic targets of what you want to

achieve with a particular part of your time. It motivates you to work harder and

concentrate more.

Don’t become disheartened if you fail to meet your targets in the time set, and

don’t try to squeeze in what you haven’t done with what you do next time.

Otherwise, you may put undue stress to on yourself which is counterproductive.

Missing targets happen, as you can never truly know how long something will

24

take you to do if you have not done it before. Re-adjust your targets next time to

compensate for what you didn’t get done the last time.

6. Outcome of Technology choices
The technologies I chose worked out perfectly for me. I could do relatively comfortably

what I wanted to achieve with Java, Java Sound, Swing and AWT libraries.

Getting Swing to display some components felt a bit awkward at times, as some

components didn’t display properly depending on what way their size was set and

where it was set. It seems a little inconsistent and unintuitive in that way.

I used Eclipse as my IDE. I can’t recommend this enough. It’s an incredible tool that

makes your life so much easier. I hadn’t coded in Java before and it helped me learn

incredibly quickly and how a Java programmer codes. Every object you create, Eclipse

will show what methods can be applied to it when you try to use a method. It gets you

used to the style of coding in Java, as you can see how data is associated with its own

specific classes and how the data is retrieved. It also makes development so much

quicker and more of a joy to do. It takes out a lot of the hard work, and lets you just

concentrate on what you have to do.

I definitely made the right choices in the technologies I chose. Java is very logical and

intuitive to code with, so extracting the functionality I needed was a relatively smooth

process.

25

Acknowledgements
I would like to thank my supervisor and lecturer, Paul Barry, for all his patience and

guidance throughout this project. For giving me feedback on the project sometimes

outside of college hours. I wouldn’t have been able to pull off this project to the standard

it is without his help.

Also, thanks to the other supervisors Christophe Meudec, Joseph Kehoe and Nigel Whyte

who gave feedback on our project presentations and offered any help if needed.

